'
Dạng 2: Xét dấu các hệ số của hàm bậc ba, phân tích đồ thị hàm số.
Bài Làm:
Xét đồ thị hàm số $y=ax^{3}+bx^{2}+cx+d$.
a) Xác định dấu của a
Từ đồ thị, ta tìm được giới hạn $L=\lim_{x\rightarrow +\infty }y$.Ta thấy:
$L=+\infty \Leftrightarrow a>0$.
$L=-\infty \Leftrightarrow a<0$.
b) Xác định dấu của d
Ta có M(0; d) là giao điểm của đồ thị hàm số với trục tung. Ta có:
c) Xác định dấu của b và c
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là $x_{CD}$ và $x_{CT}$. Vì $x_{CD}$ và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Xác định dấu của $x_{CD}.x_{CT}$ hay dấu của $\frac{c}{a}$ từ đó tìm được dấu của c.
Xác định dấu của $x_{CD}+x_{CT}$ hay dấu của $\frac{-b}{a}$ từ đó tìm được dấu của b.
Bài tập 1: Hàm số $y=ax^{3}+bx^{2}+cx+d$ có đồ thị như hình bên. Xác định dấu của a, b, c, d.
Bài giải:
Ta thấy: $L=\lim_{x\rightarrow +\infty }y=-\infty $ do đó a < 0.
Giao điểm của đồ thị hàm số với trục tung là điểm nằm trê trục hoành nên d < 0.
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là $x_{CD}$ và $x_{CT}$. Vì $x_{CD}$ và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Vì các điểm cực đại, cực tiểu của hàm số nằm về hai phía của Oy nên $x_{CD}.x_{CT}$ < 0 do đó a và c trái dấu, nên c > 0.
Vì trong hai điểm cực trị, điểm có hoành độ âm gần trục tung hơn nên $x_{CD} + x_{CT}$ > 0. Do đó a, b trái dấu, nên b > 0.
Vậy a < 0; b > 0; c > 0; d < 0.
Bài tập 2: Hàm số $y=ax^{3}+bx^{2}+cx+d$ có đồ thị như hình bên. Xác định dấu của a, b, c, d.
Bài giải:
Ta thấy: $L=\lim_{x\rightarrow +\infty }y=+\infty $ do đó a >0.
Giao điểm của đồ thị hàm số với trục tung là điểm nằm trên trục hoành nên d = 0.
Gọi lần lượt các điểm cực đại và cực tiểu của hàm số là $x_{CD}$ và $x_{CT}$. Vì $x_{CD}$ và $x_{CT}$ là nghiệm của phương trình $y^{'}=3ax^{2}+2bx+c=0$ nên $\left\{\begin{matrix}x_{CD} + x_{CT}=\frac{-2b}{3a}\\x_{CD}.x_{CT}=\frac{c}{3a} \end{matrix}\right.$
Vì các điểm cực đại, cực tiểu của hàm số nằm về hai phía của Oy nên $x_{CD}.x_{CT}$ < 0 do đó a và c trái dấu, nên c > 0.
Vì hai điểm cưcj trị cách đều trục tung nên $x_{CD} + x_{CT}$ = 0. Do đó b = 0.
Vậy a > 0; b = 0; c < 0; d = 0.