'
$\overrightarrow{a}+\overrightarrow{b}=(a_{1}+b_{1};a_{2}+b_{2};a_{3}+b_{3})$ $\overrightarrow{a}-\overrightarrow{b}=(a_{1}-b_{1};a_{2}-b_{2};a_{3}-b_{3})$ $k\overrightarrow{a}=k(a_{1};a_{2};a_{3})$ với k là số thực |
==> Hệ quả:
$\overrightarrow{a}=\overrightarrow{b}<=>a_{1}=b_{1};a_{2}=b_{2};a_{3}=b_{3}$ $\overrightarrow{0}=(0;0;0)$ $\overrightarrow{a},\overrightarrow{b}$ cùng phương <=> $a_{1}=kb_{1};a_{2}=kb_{2};a_{3}=kb_{3}$ $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=(x_{B}-x_{A};y_{B}-y_{A};z_{B}-z_{A})$ |
Định lí
$\overrightarrow{a}.\overrightarrow{b}=(a_{1}.b_{1}+a_{2}.b_{2}+a_{3}.b_{3})$ |
Ứng dụng
$\overrightarrow{a}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$ |
$AB=\left | \overrightarrow{AB} \right |=\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}+(z_{B}-z_{A})^{2}}$ |
$\cos\varphi =\cos (\overrightarrow{a},\overrightarrow{b})=\frac{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}.\sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}$ |
$\overrightarrow{a}\perp \overrightarrow{b}<=> a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}=0$ |
Định lí
$(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$ |
$Ax+By+Cz+D=0$ với $A,B,C\neq 0$. |
Điều kiện hai mặt phẳng song song, vuông góc
1. Điều kiện hai mặt phẳng song song
2. Điều kiện hai mặt phẳng vuông góc
Khoảng cách từ một điểm đến một mặt phẳng
Định lí
$d(M_{0},(\alpha ))=\frac{\left | Ax_{0}+By_{0}+Cz_{0}+D \right |}{\sqrt{A^{2}+B^{2}+C^{2}}}$ |
$\left\{\begin{matrix}x=x_{0}+ta_{1} & & \\ y=y_{0}+ta_{2} & & \\ z=z_{0}+ta_{3} & & \end{matrix}\right.$ |
Điều kiện để hai đường thẳng song song, cắt nhau, chéo nhau
1. Hai đường thẳng song song
2. Hai đường thẳng cắt nhau
Cho d: $\left\{\begin{matrix}x=x_{0}+ta_{1} & & \\ y=y_{0}+ta_{2} & & \\ z=z_{0}+ta_{3} & & \end{matrix}\right.$ và d': $\left\{\begin{matrix}x=x_{0}'+t'a_{1}' & & \\ y=y_{0}'+t'a_{2}' & & \\ z=z_{0}'+t'a_{3}' & & \end{matrix}\right.$
3. Hai đường thẳng chéo nhau
Câu 1: Trang 91 - sgk hình học 12
Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1)
a) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện.
b) Tìm góc giữa hai đường thẳng AB và CD.
c) Tính độ dài đường cao của hình chóp A.BCD.
Câu 2: Trang 91, 92 - sgk hình học 12
Cho mặt cầu (S) có đường kính là AB biết rằng A(6; 2; -5), B(-4; 0; 7)
a) Tìm tọa độ tâm I và bán kính r của mặt cầu (S).
b) Lập phương trình của mặt cầu (S).
c) Lập phương trình của mặt phẳng ($\alpha$) tiếp xúc với mặt cầu (S) tại điểm A.
Câu 3: Trang 92 - sgk hình học 12
Cho bốn điểm A(-2; 6; 3), B(1; 0; 6), C(0; 2; -1), D(1; 4; 0)
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng ($\alpha$) chứa AB và song song với CD.
Câu 4: Trang 92 - sgk hình học 12
Lập phương trình tham số của đường thẳng:
a) Đi qua hai điểm A(1, 0 , -3) và B( 3, -1, 0).
b) Đi qua điểm M(2,3, -5) và // với đường thẳng $\Delta $ .
phương trình $\Delta $ : $\left\{\begin{matrix}x=-2+2t & & \\ y=3-4t& & \\ z=-5t& & \end{matrix}\right.$
Câu 5: Trang 92 - sgk hình học 12
Cho mặt cầu(S) có phương trình $(x-3)^{2}+(y+2)^{2}+(z-1)^{2}=100$ và mặt phẳng ($\alpha$) có phương trình $2x – 2y – z + 9 = 0$. Mp($\alpha$) cắt mặt cầu (S) theo một đường tròn (C). Hãy xác định tọa độ tâm và tính bán kính của đường tròn (C).
Câu 6: Trang 92 - sgk hình học 12
Cho mặt phẳng ($\alpha $) có phương trình: $3x + 5y -z - 2 =0$ và đường thẳng (d) có phương trình:
$\left\{\begin{matrix}x=12+4t & & \\ y=9+3t& & \\ z=1+t& & \end{matrix}\right.$
a. Tìm giao điểm M của (d) và mặt phẳng($\alpha $)
b. Viết phương trình mặt phẳng ($\beta $) chứa điểm M và vuông góc với (d).
Câu 7: Trang 92, 93 - sgk hình học 12
Cho đường thẳng (d) có phương trình : $\left\{\begin{matrix}x=1+3t & & \\ y=-1+2t& & \\ z=3-5t& & \end{matrix}\right.$
Cho điểm A(-1, 2, -3) và $\vec{a}=(6,-2,-3)$.
a. Viết phương trình mặt phẳng ($\alpha $) chứa điểm A và vuông góc với giá của $\vec{a}$.
b. Tìm giao điểm của (d) và ($\alpha $).
c. Viết phương trình đường thẳng $\Delta $ đi qua điểm A , vuông góc với $\vec{a}$ và cắt (d).
Câu 8: Trang 93 - sgk hình học 12
Viết phương trình mặt phẳng ($\alpha $) tiếp xúc với mặt cầu (S): $x^{2}+y^{2}+z^{2}-10x+2y+26z+170=0$ và // với hai đường thẳng:
(d) : $\left\{\begin{matrix}x=-5+2t & & \\ y=1-3t& & \\ z=-13+2t& & \end{matrix}\right.$
(d') : $\left\{\begin{matrix}x=-7+3t & & \\ y=-1-2t& & \\ z=8& & \end{matrix}\right.$
Câu 9: Trang 93 - sgk hình học 12
Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M(1; -1; 2) trên mặt phẳng ($\alpha$): $2x – y + 2z + 11 = 0$.
Câu 10: Trang 93 - sgk hình học 12
Cho điểm M(2; 1; 0) và mặt phẳng ($\alpha$): $x + 3y – z – 27 = 0$. Tìm tọa độ điểm M' đối xứng với M qua ($\alpha$).
Câu 11: Trang 93 - sgk hình học 12
Viết phương trình đường thẳng ∆ vuông góc với mặt phẳng tọa độ Oxz và cắt hai đường thẳng:
(d) : $\left\{\begin{matrix}x=t & & \\ y=-4+t& & \\ z=3-t& & \end{matrix}\right.$ và (d') : $\left\{\begin{matrix}x=1-2t' & & \\ y=-3+t'& & \\ z=4-5t'& & \end{matrix}\right.$
Câu 12: Trang 93 - sgk hình học 12
Tìm tọa độ điểm A' đối xứng với điểm A(1; -2; -5) qua đường thẳng có phương trình (d):
$\left\{\begin{matrix}x=1+2t & & \\ y=-1-t& & \\ z=2t& & \end{matrix}\right.$.