'

Giải câu 5 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Theo dõi 1.edu.vn trên
Giải câu 5 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bài 5: Trang 24 - sgk giải tích 12

Tính giá trị nhỏ nhất của các hàm số sau:

a) $y=|x|$;

b) $y=x+\frac{4}{x}$. (x>0)

Bài Làm:

a) $y=|x|=\left\{\begin{matrix} -x \: khi \: x \in (-\infty;0)\\ x \: khi \: x \in [0; +\infty) \end{matrix}\right.$

Trên nửa khoảng $(-\infty;0)$ hàm số nghịch biến nên y > y(0)=0.

Trên nửa khoảng $[0;+\infty)$ hàm số luôn đồng biến nên $y \geq y(0)=0$.

Vậy $\min y=$ khi x=0.

b) TXĐ: $D=(0,+\infty)$.

Ta có $y'=1-\frac{4}{x^{2}}=0 \Leftrightarrow x=2 $ (loại x=-2 vì không thuộc TXĐ)

Bảng biến thiên

Dựa vào bảng biến thiên suy ra $\min_{x>0}y=y(2)=4$.