'
Câu 4: Trong không gian với hệ tọa độ Oxyz, có hai điểm trên trục hoành mà khoảng cách từ các điểm đó tới điểm M(-3,4,8) bằng 12. Tổng hoành độ của chúng là
A. -6
B. 5
C. 6
D. 11
Câu 5: Trong không gian hệ tọa độ Oxyz, cho tam giác ABC biết A(1,2,3), B đối xứng với A qua mặt phẳng (Oxy), C đối xứng với B qua gốc tọa độ O. Diện tích tam giác ABC là
A. $6 \sqrt{5}$.
B. $3 \sqrt{2}$.
C. $4 \sqrt{3}$.
D. $\frac{3 \sqrt{2}}{2}$.
Câu 6: Trong không gian Oxyz, cho tứ giác ABCD có A(2,-1,5), B(5, -5,7), C(11,-1,6), D(5,7,2). Tứ giác ABCD là hình gì?
A. Hình thang vuông.
B. Hình thoi.
C. Hình bình hành.
D. Hình vuông.
Bài Làm:
Bài 4: Đáp án C
Gọi điểm $A(a,0,0) \in Ox$. Từ giả thiết ta có $MA=12 \Leftrightarrow (a-3)^{2}+4^{2}+8^{2}=12^{2} \Leftrightarrow (a-3)^{2}=64 \Leftrightarrow \left[ \matrix{x = -5 \hfill \cr x = 11 \hfill \cr} \right.$
Vậy tổng hoành độ của chúng là 6.
Bài 5: Đáp án A
Vì B đối xứng với A qua mặt phẳng (Oxy) nên B(1,2,-3).
Vì C đối xứng với B qua gốc tọa độ O nên C(-1,-2,3).
$\overrightarrow{AB}=(0,0,-6), \overrightarrow{AC}= (-2,-4,-6) \Rightarrow [\overrightarrow{AB},\overrightarrow{AC}]=(24,-12,0)$.
$S_{ABC}= \frac{1}{2} |[\overrightarrow{AB},\overrightarrow{AC}]|=6 \sqrt{5}$.
Bài 6: Đáp án A
Vì $\overrightarrow{AB}=(3,-4,2), \overrightarrow{DC}=(6,-8,4), \overrightarrow{BC}=(6,4,-1)$
nên $\overrightarrow{AB}$ cùng phương $\overrightarrow{DC} \Rightarrow AB \parallel CD$.
$\overrightarrow{AB}.\overrightarrow{BC}=0 \Rightarrow AB \perp BC$.
Vậy ABCD là hình thang vuông.