'
Bước 1: Tìm tập xác định.
Bước 2: Sự biến thiên
Xét chiều biến thiên của hàm số:
Tìm cực trị.
Tìm giới hạn tại vô cực, các giới hạn tại vô cực và tìm tiệm cận (nếu có).
Lập bảng biến thiên.
Bước 3: Vẽ đồ thị
Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.
1. Hàm số $y=ax^{3}+bx^{2}+cx+d$ $(a \neq 0)$
Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị hàm số $y=x^{3}+3x^{2}-4$.
Giải: TXĐ $D=\mathbb{R}$.
Trên các khoảng $(-\infty,-2)\cup (0,+\infty)$, y'>0 nên hàm số đồng biến. Trên khoảng (-2,0), y'<0 nên hàm số nghịch biến.
Hàm số đạt cực đại tại $x=-2, y_{CĐ}=y(-2)=0$
Hàm số đạt cực tiểu tại $x=0, y_{CT}=y(0)=-4$.
$\lim_{x \to -\infty}y=\lim_{x \to -\infty}x^{3}(1+\frac{3}{x}-\frac{4}{x^{3}})=-\infty$
$\lim_{x \to +\infty}y=\lim_{x \to +\infty}x^{3}(1+\frac{3}{x}-\frac{4}{x^{3}})=+\infty$
Bảng biến thiên
Giao với Ox, y=0 nên $x^{3}+3x^{2}-4=(x-1)(x+2)^{2}=0\Leftrightarrow \left[ \matrix{x=-2 \hfill \cr x=1 \hfill \cr} \right.$.
Giao với Oy, x=0 nên y=-4.
Dạng của đồ thị hàm số bậc ba $y=ax^{3}+bx^{2}+cx+d (a \neq 0)$
2. Hàm số $y=ax^{4}+bx^{2}+c$ $ (a \neq 0)$
Dạng của đồ thị hàm số $y=ax^{4}+bx^{2}+c$ ($a\neq 0$)
3. Hàm số $y=\frac{ax+b}{cx+d}$ ($c \neq 0, ad-bc \neq 0$)
Dạng của đồ thị hàm số $y=\frac{ax+b}{cx+d}$ ($c \neq 0, ad-bc \neq 0$)
Câu 1:Trang 43 - sgk giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số bậc ba sau:
a) $y = 2 + 3x - x^{3}$
b) $y = x^{3} + 4x^{2}+ 4x$
c) $y = x^{3} + x^{2} + 9x$
d) $y = -2x^{3} + 5$
Câu 2: Trang 43 - sgk giải tích 12
Khảo sát tự biến thiên và vẽ đồ thị của các hàm số bậc bốn sau:
a) $y = -x^{4} + 8x^{2} - 1$
b) $y = x^{4} - 2x^{2} + 2$
c) $y=\frac{1}{2}x^{4}+x^{2}-\frac{3}{2}$
d) $y=-2x^{2}-x^{4}+3$
Câu 3: Trang 43 - sgk giải tích 12
Khảo sát sự biến thiên và vẽ đồ thị các hàm số phân thức:
a) $y=\frac{x+3}{x-1}$
b) $y=\frac{1-2x}{2x-4}$
c) $y=\frac{-x+2}{2x+1}$
Câu 4: Trang 44 - sgk giải tích 12
Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:
a) $x^{3} - 3x^{2} + 5 = 0$
b) $-2x^{3}+ 3x^{2} - 2 = 0$
c) $2x^{2} - x^{4} = -1$
Câu 5: Trang 44 - sgk giải tích 12
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: $y = -x^{3} + 3x + 1$
b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số m: $x^{3} - 3x + m = 0$
Câu 6: Trang 44 - sgk giải tích 12
Cho hàm số : $y=\frac{mx-1}{2x+m}$
a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên khoảng xác định của nó.
b) Xác định m để tiệm cận đứng của đồ thị đi qua $A(-1,\sqrt{2})$.
c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
Câu 7: Trang 44 - sgk giải tích 12
Cho hàm số : $y=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+m$
a) Với giá trị nào của tham số m, đồ thị của hàm đi qua điểm (-1; 1) ?
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi $m = 1$.
c) Viết phương trình tiếp tuyến (C) tại điểm có tung độ bằng $\frac{7}{4}$.
Câu 8: Trang 44 - sgk giải tích 12
Cho hàm số: $y = x^{3} + (m + 3)x^{2}+ 1 - m$ (m là tham số) có đồ thị ($C_{m}$).
a) Xác định m để hàm số có điểm cực đại là $x = -1$.
b) Xác định m để đồ thị ($C_{m}$) cắt trục hoành tại $x = -2$.
Câu 9: Trang 44 - sgk giải tích 12
Cho hàm số: $y=\frac{(m+1)x-2m+1}{x-1}$ ( m là tham số ) có đồ thị (G).
a) Xác định m để đồ thị (G) đi qua điểm (0; -1).
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m tìm được.
c) Viết phương trình tiếp tuyến của đồ thị trên tại giao điểm của nó với trục tung.
Dạng 1: Xét dấu các hệ số của hàm bậc bốn trùng phương, phân tích đồ thị hàm số.
Dạng 2: Xét dấu các hệ số của hàm bậc ba, phân tích đồ thị hàm số.
Dạng 3: Xét dấu các hệ số của hàm bậc nhất trên bậc nhất, phân tích đồ thị hàm số.