'
Bài 9: Trang 26 - sgk hình học 12
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, cạnh bên tạo với đáy một góc $60^{0}$. Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF
Bài Làm:
Giải: Gọi giao của AC và BD là H, giao của AM và SH là I. Ta có $SH \perp (ABCD)$.
Xét mặt phẳng (P) và (SBD) có I là giao điểm của (P) và (SBD), $BD \parallel (P)$ nên giao tuyến của (P) và (SBD) là đường thẳng đi qua I và song song với BD lần lượt cắt SB và SD tại E và F.
Ta có $\widehat{(SA, (ABCD))}=\widehat{(SA, AH)}=\widehat{SAH}=60^{0}$.
Xét tam giác SAC có $SH=AH. \tan 60^{0}=\frac{1}{2}AC. \sqrt{3}=\frac{a \sqrt{6}}{2}$
Hơn nữa ta có I là trọng tâm của tam giác SAC nên $\frac{SI}{SH}=\frac{2}{3}=\frac{SF}{SD}.\frac{SE}{SB}$.
Suy ra $\frac{V_{SFAE}}{V_{SDAB}}=\frac{SF}{SD}.\frac{SA}{SA}.\frac{SE}{SB}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}$
$\frac{V_{SFME}}{V_{SDCB}}=\frac{SF}{SD}.\frac{SM}{SC}.\frac{SE}{SB}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}$.
Mặt khác $V_{SABD}=V_{SDCB}=\frac{1}{2}V_{SABCD}=\frac{1}{2}.\frac{1}{3}.SH.S_{ABCD}=\frac{a^{3}\sqrt{6}}{12}$
Vậy $V_{S.AEMF}=V_{SFAE}+V_{SFME}=\frac{a^{3}\sqrt{6}}{18}$.